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Numerical simulations of large falling drops
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SUMMARY

The numerical simulation in a two-phase medium of falling drops allows their velocities and shapes
during the fall to be calculated. The terminal velocities and shapes for bromoform and chlorobenzene
drops falling into water have been obtained. Although the method used calculates the flow inside and
around the drop, it has not been possible to give results independent of the spatial discretization and
the boundary effects. However, taking these influences into account, the numerical results agree with
the experimental data given and the study consists of a good validation of the SURFER code used.
Copyright © 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Thanks to experimental observations, it is well known that under the effect of gravity a drop
of liquid, which is at first spherical and stationary, placed in another non-mixable liquid, ends
up falling—if it does not break down beforehand—at a constant velocity called the terminal
velocity with a constant shape called the terminal shape. This velocity and shape depends,
among other parameters, on the initial diameter of the drop. The expression ‘equivalent spher-
ical diameter’ often encountered in literature refers to the diameter of a sphere having the
same volume as the deformed drop, which, in our case, means the initial diameter.

With regard to the fall of a drop, initially spherical and dropped in a liquid or a gaseous
fluid at rest, we can distinguish many zones according to the type of deformation reached by
the drop (Figure 1). At the beginning of the fall, there is a first zone, called the initial zone,
where the drop reaches its terminal velocity almost like a solid rigid sphere. The second zone
is where the drop reaches its maximum terminal velocity called limit velocity at the summit
of the velocity peak. This zone is called the limit zone. A third zone is the transition zone
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Figure 1. Shapes and zones during the fall: (a) extract of [1]; (b) extract of [3].

in which the terminal velocity diminishes slightly. Finally we have the fourth zone called
the critical zone where the drop reaches its critical terminal velocity before it crumbles. The
observation of the drop silhouette leads towards the illustration given in 1(a) taken from
Reference [1] where the parachute shape in the critical zone was observed for big drops of
chloroform falling in sugared water [2]. These different zones are presented in Figure 1(b)
taken from Reference [3] in the case of chlorobenzene drops falling into water where the
experimental terminal velocity is expressed according to the equivalent spherical diameter.

Although the experimental means enabled the observation of the drop’s fall under the effects
of gravity early on, it is only recently that numerical codes have succeeded in simulating
it in a satisfactory manner. A vectorized code called SURFER has been developed by S.
Zaleski and his team [4, 5] allowing them to simulate the deformation of a drop placed in
an initially uniform flow by using either the axisymmetrical or the three-dimensional code
version. In one of its first versions, the latter (called cubic in the rest of the text) enabled
the initialization of a drop which falls under the effect of gravity, in a cubic box (measuring
CGS: 1cm x 1 ecm x 1 cm). Using periodic boundary conditions on some faces opposing each
other, the fluid going out from one side is reintroduced into the other. Thus the drop which
disappears from one side reappears on the other, in such a way that the trajectory is split up
into a succession of periodic passages across the box. This allows calculations to be made
with more or less refined spatial definitions (number of cells equal to 34° or 66° or 128°)
in the box using a moderate computer space memory. However, the drop falls in its proper
wake so that a series of three-dimensional equidistant drops are so simulated. Thus one must
take into account the interaction between drops in the interpretation of the results. The wake
effect, recently studied for two drops interacting [6], has been evaluated as negligible but
the existence of drops not only above or below but also laterally renders our situation more
complex and more sensitive to interactions.
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At every time step and in every cell of the box, the code calculates the velocity field
relative to a referential frame attached to the centre of gravity of all the fluid in the box.
Then the drop fall velocity calculated versus a fixed referential frame can be deduced [7, 8].
As the code follows the interface between the discrete and dispersed phases during the stage
of deformation, it also allows the shape taken by the drop to be described up to its terminal
velocity during the fall [9, 10].

The purpose of this article is to validate the SURFER code by comparing the numerical
terminal velocities and shapes to the experimental ones, in concrete cases of non-miscible
liquids moving in the box.

2. THE COMPUTATION DOMAIN

As it has been mentioned earlier, the way the drop deforms its terminal velocity is influenced
by factors such as the proximity of the edges and the boundary conditions of the computation
domain. Furthermore, we can select between the mirror boundary conditions and the boundary
conditions of periodicity. When we apply a mirror condition on one side, the fluid slides onto
it without going through, thus simulating the presence of a wall, whereas for a condition of
periodicity on a side, the fluid goes through it and it is the presence of a neighbouring flow
which is simulated. The results of a numerical calculation are generally valid only if there is
absolutely no influence of numerical parameters such as spatial and temporal discretization.
This independence having not been attained because of computing time costs involved by the
choice of a too large box size, this is their influence on the results which are presented and
discussed next.

2.1. The cubic domain

The calculation domain consists of a cube whose edges are arranged according to the axis x,
v, z of a Cartesian frame attached to the centre of gravity of all the fluid contained in the
cube, x being the fall direction. We cut the edges directed according to x, y and z into nx, ny
and nz segments respectively, with nx =ny =nz in the cubic case. The cube is characterised
by the length L of an edge (Figure 2). Thus the numeric domain is uniformly decomposed
into cubic cells of size h*, where h=L/nx is the space step which characterizes the spatial
definition or discretization of the domain.

The boundary conditions used in this domain are conditions of periodicity on the superior
and inferior sides crossed by the drop when it falls, as well as the two vertical sides which are
opposite to each other. On the other two vertical remaining sides we use mirror conditions.
Such a configuration enables the influence of different boundary conditions to be compared
but introduces a dissymmetry between the vertical sides of the domain, which is not realistic
regarding to the experimental situation. If D is the initial drop diameter, D/h represents its
initial discretization.

The numerical treatment of the fall appears to be dependent not only on the parameter
D/h but also on parameter L/D. In fact this latter proportion determines the closeness of the
edges with regard to the drop and their influence on its deformation. Moreover we must take
into consideration, by limiting L/D, the maximum spread the drop takes while deforming a
lot, because it risks touching the edges during the calculation. Obviously the ideal situation
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Figure 2. The cubic calculation domain.

to avoid all these influences would be to push back the edges far enough to maintain a
uniform environment far from the drop—which would reproduce the experimental conditions
at best—while maintaining an accurate spatial definition. This cannot currently be envisaged,
as it would be very costly in computing time, as previously noted.

Thus, we are looking to have large values of D/h and L/D simultaneously. This leads to
small values of / for a given drop diameter D and we come across the following contradiction:

e On the one hand, introducing a large drop into a small area leads to good drop definition
and good quality for interface calculations but there is also a strong edge influence on
the drop.

e On the other hand, pushing away the edges of the area to reduce their influence on
the drop results in increasing the computational area. In order to avoid taking up too
much computer memory space and calculation time, we must reduce the spatial definition
which causes detriment to the discretization and thus to the precision of the calculation.

These contradictory elements feed the discussion which will arise when presenting the
results and are valid for the different areas of calculation and the various code versions.

It must be noted that for values of nx superior to 66, the use of a super-computer—of the
CRAY type, for example—is necessary.

2.2. Parallelepipedal area

In this type of area different values of nx, ny and nz can be chosen. As indicated above,
the advantage of this version is to reduce the influence of the wake on the terminal velocity
considering L=2 or 3 cm for example in the direction of the fall while restraining the size
of the other two dimensions of the area. For this case, boundary conditions of periodicity
have been used on every side preserving the symmetrical aspect of the numerical treatment.
The evolution of the drop during the fall appears more likely considering that the trajectory
generally stays closer to the vertical and the shape achieved by the drop after deformation
presents a more axisymmetrical appearance according to the vertical direction. In directions

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:109-123
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y and z, the sizes are defined by Ah.ny and h.nz with nx =130, ny =nz=66. Thus while
L = 1cm in the nx direction, the size in the others is only 0.5c¢m and the effects of the edges
are more sensitive.

As it has already been noted, while the drops are relatively large compared with the area
and are being deformed a lot, they run the risk of touching the edges. To avoid this, L has
been increased sufficiently in proportion to the initial drop diameter. On the contrary while the
drops are relatively small for a fixed number nx, it would seem appropriate to reduce L with
regard to the initial drop diameter, otherwise the spatial definition risks being insufficient.

2.3. Axisymmetrical domain

An axisymmetrical version of the code was available. In this case L represents the maximum
radial dimension of the domain. This version needs far less calculation time than the three-
dimensional versions. This could be easily used on less powerful computers (PC, RS6000
stations, etc.) than the CRAY computers. It allows the setting up of a larger computational
area while preserving good spatial definition. It does not, however, allow the appearance of
trajectory deviation (or zigzagging) during the fall—which is sometimes characteristic of some
liquids—and more generally of all three-dimensional aspects.

Finally it can be seen that regardless of the areas of calculation under consideration, they
do not avoid the wake effect. This is an inherent drawback to the method, so we cannot hope
for better than reducing its influence, to a greater or lesser extent, by taking an area much
larger than the size of a drop while preserving good spatial definition. Thus the ideal case
would correspond to the largest possible values of both D/h and L/D, which is almost only
possible for the axisymmetrical area. The drop in this case however, has to stay in the vertical
fall direction. This restriction is not realistic in some cases where it may be responsible for
fluctuations, which appear in the fall velocity, as we shall see in the following.

3. RESULTS AND DISCUSSIONS

Among a large variety of fluid combinations experimented upon in two-stage experiments, we
have come to rest on the case of drops falling in the water, made of either chlorobenzene or
bromoform. The reason for this is that the former material deforms very little and the latter
deforms a lot. This choice was made taking into account the known experimental results.

3.1. The terminal velocities

As the numerical codes calculate the fluid velocity in each cell of the calculation area, the
average drop velocity can be determined at any moment. Two cases can be observed con-
cerning this velocity: either it regularly tends towards a boundary value constant in the time
and the terminal velocity is determined by this constant, or it begins fluctuating with time
and no constant limit is clearly defined. In this latter case which appears the most frequently,
the first maximum of this average velocity has been systematically taken as terminal velocity
value.

Figures 3 and 4 sum up the results concerning the drops of chlorobenzene and bromoform
respectively. The tables in Figures 3 and 4 present the numerical parameters which characterize
the studied cases either in three-dimensional geometry (named num-3d) or in axisymmetrical
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Table |
Dimmjnx ny nz L{cm) h LD Dh Vinum Yiesp A
num-3c
1 130 66 66 0B 0005 6 213 5 29 072
1 130 66 66 08 0.008 8 16 4 29 038
1 130 66 6 1 0008 10 128 308 29 007
2 130 86 66 08 00068 4 32 685 55 025
2 66 66 66 1 0016 5 128 95 55 073
2 130 66 66 1 0008 5 256 746 55 0.36
3 66 66 66 1 0016 333 192 62 78 -02
3 66 66 66 2 0031 667 96 782 7.8 0
4 130 66 66 2 0016 5 256 08937 g 0.04
5 66 686 66 1 0016 2 32 8 10.5 -0.2
5 66 66 66 2 0.031 4 16 101 105 -0
6 66 66 66 1 0016 167 384 75 115 -03
6 130 66 66 2 0016 333 384 905 11.5 02
& 130 68 66 4 0031 5 256 1081 13 -0.2
num-axi
1 514 130 01 BE-04 1 128 4 29 038
1 514 130 02 0002 2 64 53 29 083
1.5 514 130 0.2 0002 133 96 56 425 032
2 514 130 0.2 0002 1 128 96 55 075
2 514 130 0.3 0002 15 B53 1004 55 083
3 514 130 0.3 0002 1 128 10897 7.8 04
3 514 258 03 0001 1 25 139 7.8 078
4 514 130 0.5 0004 125 102 117 8 03
4 514 130 1 0008 25 51.2 1064 9 0.18
5 514 130 1 0008 2 64 1122 105 0.07
5 514 130 2 0018 4 32 1404 105 0.34
68 514 130 0.5 0004 083 154 104 M5 -0
6 514 130 2 0016 333 384 1404 115 022
8 514 66 1 0016 125 512 108 13 02
B 514 130 1 0008 125 102 117 13 -041
10 514 130 1 0008 1 128 85 125 -02
(a) 10 514 130 2 0016 2 64 1093 125 -01
L |
oS O numas g " 14 i
8 100 F ® numaxi Z 10 A i 0 num-3d
0 T § E IJS ] ® num-axi
Q 5 10 15 ; 5 : = A expe
(b) LD £
E o
2 5 10

-
=)

diameter mm

Figure 3. Chlorobenzene drops fall in water: (a) A=(Vinum—Vtexpe)/Viexpe: (b) Discretisation/
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proportion; (¢) Terminal velocity: Chlorobenzene.

Int. J. Numer. Meth. Fluids 2004; 45:109-123



NUMERICAL SIMULATIONS OF LARGE FALLING DROPS 115

Table |
Dimm}nx ny nz Liem) h LD Dh Vipm Vieg A
num-3c
1 66 66 66 1 002 10 64 146 185 02
1 130 66 66 08 001 8 16 359 185 0.94
1 130 66 66 1 001 10 128 306 185 065
1 130 66 66 1.2 001 12 107 27 185 0.46
1 130 66 66 16 0.01 16 8 213 185 015
2 66 66 66 1 002 5 128 284 239 019
2 130 668 66 1 001 5 256 256 239 007
2 130 66 66 2 002 10 128 28 239 017
3 130 66 66 2 002 667 192 221 226 0
4 130 66 66 2 002 5 256 188 223 -02
4 130 66 86 3 002 7.5 171 1995 223 -01
5 130 66 668 2 002 4 32 18 223 -02
5 130 66 66 3 002 6 213 201 223 -0+
6 130 66 66 2 002 3.33 384 171
6 130 66 66 3 002 5 256 207
num-axi
1 514 130 0z 0 2 64 335 185 0.81
1 514 258 02 0 2 128 321 185 074
1 514 258 1 0 10 256 34 18.5 0.84
2 514 258 03 0 1.5 171 203 239 023
2 514 130 04 0O 2 64 a5 239 0.48
2 514 258 1 0 5 512 262 239 01
4 514 66 1 002 25 256 2015 223 -01
4 514 130 1 001 25 512 208 223 -01
4 514 258 1 0 25 102 228 223 002
5 514 258 1 0 2 128 213 223 0
(a) 5 514 130 2 002 4 32 2086 223 041
200 o
] E 40
150 o ®
£ 100 '_ [ num-3d 2z 30 —@w 0 num-3d
= 50 | ® num-axi g 20 —E & @—@—B @ num-axi
0 Q Enmn O E 10 A expe
0 10 20 E O
] LD 8 o 5 10

-
o

diameter mm

Figure 4. Bromoform drops fall in water: (a) A = (Vinum — Viexpe)/Viexpe; (b) Discretisation/proportion;
(¢) Terminal velocity: bromoform.
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geometry (named num-axi) as well as the numerical results for the terminal velocity. In the
part num-3d of the charts, the distinction between the cubic and parallelepipedal domains is
shown by the values taken by nx, ny and nz, but it does not appear on the curves where these
cases are represented by the same sort of squares. The quantity called A (Figures 3(a) and
4(a)) measures the relative gap between calculation and experiment and is obtained by the
relation: A= (Vi num — Vi expe)/Vi expe Where Vi num and V; e are the vertical components of
the terminal velocity in the numerical and experimental cases respectively. The V; ¢y values
are taken from Reference [3]. The variations of the discretization D/h and the proportion L/D
are presented in Figures 3(b) and 4(b). The terminal velocity values calculated with different
codes for different drop diameters are compared with each other and with experimental values
(Figures 3(c) and 4(c)) as well. The numerical parameter’s influence is also shown insofar as
the terminal velocity takes different values for the same diameter and a given code version.

3.1.1. Comparison with experiment. In a general manner, despite a certain scattering of re-
sults, it has always been possible, varying the discretization D/h and the proportion L/D, to
bring together the values of the numerical terminal velocity and the experimental ones (Figures
3(c) and 4(c)) and these values also present a scattering around the average line (Figure 1b).
It appears that on this point, the two code versions have their own advantages and drawbacks.
Thus, in num-axi, one can reach drop discretization D/h far superior, up to 5 times and more
than in num-3d (Figures 3(b) and 4(b)). However the terminal velocity obtained is not closer
to the experiment. This leads to the understanding that, concerning the terminal velocity, the
spatial definition D/A is not necessarily preponderant regarding the effects of the edge which
find itself introduced or amplified for weak L/D values.

The spatial definition influence in num-axi can be clearly shown as in the case of the 4mm
drop of bromoform (Figure 4(a)). While nx value is refined from 66 to 130 and then to 258,
the gap with the experiment is reduced by 10—7% then 2%, everything being equal otherwise.

Moreover it can be noticed that it is not always by increasing the discretization D/h—as
it could have been thought at first—that this bringing together could be achieved, sometimes
by increasing the proportion L/D (Figures 3(a) and 4(a)). Thus, in num-axi, if it is correct
for the 6 mm drop of chlorobenzene, it is not the case for the 4 mm or the 10 mm drop. In
the same manner, in num-3d, if it applies to the 2 mm drop of bromoform, it doesn’t apply
to that of Smm or 1 mm drops. This reveals that the role and relative importance of the two
parameters L/D and D/h can be inverted according to the situations considered: in spite of a
good discretization, the drop can suffer from a strong influence on the edges. Inversely we
can get closer to the experiment by widening the edges but this will be to the detriment of
the discretization.

Generally, on the one hand, the results are dependent on the numerical parameters, and
on the other, the velocity values obtained are of the order of magnitude of the experimental
values. Thus it can be concluded that:

— the phenomenon of the fall is correctly treated by the code.

— it is only in terms of the precision that the numerical parameter’s influence on the
terminal velocity appears.

— a more rigorous confrontation with the experiments would need to render the calculations
independent of discretization, which would actually be very expensive.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:109-123
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Fall velocity
chlorobenzene, D = 4mm
num-axi,

o 15 L=1cm
§ 10- e — |
> / expe
8 51,
2 num-3d

0 L L = 2cm

0 0.5
time s

Figure 5. Fall velocity.

3.1.2. Comparisons between code versions. Despite the very good spatial definitions easily
obtained by the axisymmetric version for reduced edge effects, it does not give very different
results from those obtained by the three dimensional one. However the numerical parameters
influence are not the same. For example the two versions treat the case of the 1 mm diameter
drop in a similar way, the result for the chlorobenzene being relatively closer to the experiment
than for the bromoform (Figures 3(c) and 4(c)). However, the roles of discretization D/h and
proportion L/D are different in both cases. Thus, for the bromoform, in num-axi, the more
realistic terminal velocity V; value of 32.1 cm/s corresponds at the same time, to the best
discretization (D/h=128) and to very obvious edge effects (L/D=2). On the other hand, in
num-3d, this value is not reached for the best discretization (D/h=8) but by reducing the
edge effects as far as possible (L/D=16). The same applies for the chlorobenzene. There is
a tendency to conclude that the num-3d version is more sensitive to the edge effects than the
num-axi version.

3.2. Fall time and initial acceleration

As previously noted, the curve V(¢) describing the change in velocity according to time since
the initial moment highlights the point at which terminal velocity is attained. It simultaneously
delivers the fall time—namely the time the drop takes to reach its terminal velocity—as well
as the initial acceleration.

When it can be clearly defined, the fall time is comparable for the two code versions: for
example, they give 0.4 s for the 4 mm chlorobenzene drop (Figure 5) or still 0.05s for the
4 mm bromoform drop (Figure 6) as well as for the bromoform 5 mm one. These times are
very short but concur with the remarks made by the experimenters who noted that terminal
velocity may be reached very early after the release of the drop [2, p. 305].

The initial acceleration under gravity for the chlorobenzene (Figure 5) is 0.5m/ s* for a drop
of 4 mm diameter, a value very close to 0.6 m/s2 represented by the theoretical expression
g(y — 1)/(y + 0,5), where y represents the density ratio and g the gravity acceleration [2].
The agreement is also good for the 4 mm bromoform drop (Figure 6) for which is obtained
5m/s’, very close to the theoretical value of 5.42 m/s’.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:109-123
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Fall velocity
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Figure 6. Fall velocity.
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Figure 7. Shape regimes chart.

3.3. Study of shapes

Drops falling in free fall in infinite media under the influence of gravity are generally grouped
under the following categories: (a) spherical, (b) ellipsoidal, (c) spherical-cap or ellipsoidal-
cap. In the past [2], it has been possible to prepare a generalized graphical correlation—or
shape regimes chart—based on experimental observations in terms of the following numbers:
Eotvos number Eo = g(Ap)d?/o, Morton number M = gu*(Ap)/p?c® and Reynolds number
Re=pd, U/u. In these relations p is the dynamical viscosity and p is the density of the dis-
persed phase, ¢ is the interfacial tension, Ap is the density difference between the two phases.
Other particular features associated with the fall can also be the subject of theoretical and
experimental confrontations, such as the breaking and the oscillating frequency of the drops.

3.3.1. Shape regimes. Generally speaking, the ellipsoidal regime responds only to relatively
weak Morton numbers (M < 10), while the spherical regime applies to all Morton numbers.
With regard to the wobbling regime—namely when falling drops undergoing random wobbling
motions—it corresponds to very low Morton numbers (M ~ 10~!2) and high Reynolds numbers
(Re~10%) [2]. In Figure 7 (taken from the chart given in Reference [2]) the distribution
of the various possible regimes is presented with the experimental separating lines. All the
cases numerically studied for the bromoform (circles) and the chlorobenzene (triangles) are
represented in it. For the cases considered, the Morton numbers are very low, between 10~°

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:109-123
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Chlorobenzene
D=6mm,L=1cm
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Figure 8. Falling drop deformations.
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0 0.2 0.4 0.6

time s

Figure 9. Falling drop deformations.

and 10~'2; thus, the regimes concerned go from the spherical to the wobbling regime, through
to the ellipsoidal one (Figure 6). This compares reasonably favourably with the experimental
chart, at least, if one focuses only on the beginning of the terminal velocity fall phase,
considering that the presence of pulsations and other edges interactions interfere with the
drop shape during the second part of the fall, as it will be seen next.

3.3.2. Shapes during the fall. The presentation of the drop profiles during the fall highlights
two clearly distinct phases. The first extends from ¢ =0 to the time where the terminal velocity
is well established, while the drop changes progressively from the spherical shape to the
ellipsoidal or semi-ellipsoidal depending on the case. The second phase begins after this and
can be described as the destabilization stage of the fall in terminal velocity state (see Figures
8 and 12). The shape fluctuates more or less between oblate and prolate, in phase with the
velocity curve fluctuations.

These fluctuations or oscillations can come from the drop itself as the experiments have
proved [2, p. 168; 3]. However in our numerical case it can also come from the presence
of the wake in which the drop falls. An agreement with the experiment can be observed [3]
for the spheroidal shape of the 6 and 10 mm chlorobenzene drops (Figures 8 and 9), and
for 4 and 5 mm bromoform drops (Figures 10 and 12). On the other hand, the 2 mm drop
of bromoform (Figure 11) is faraway from the spherical shape although the experiments [3]
indicate that it remains spherical up to 3 mm in diameter.
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Bromoform
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Figure 10. Falling drop deformations.
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Figure 11. Falling drop deformations.
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Figure 12. Falling drop deformations.
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Bromoform
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Figure 13. Drop breaking.
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Figure 14. Drop breaking.

3.3.3. Drops breaking. The drops breaking is more easily reached using the axisymmetrical
code version, which allows the falling drop to be followed for a sufficient period of time.
Experiment [3] gives 5 mm as a maximum diameter value, for a bromoform drop falling in
terminal velocity, before breaking. In agreement, calculations (Figures 13 and 14) confirm the
breaking appearance for the 5 and 6 mm drops. It appears after a thickness reduction in the
fluid film during the pulsation, when a satellite—namely a separation of a small part of the
primary drop—is expulsed (Figure 13). The agreement between calculation and experiment
on the drop breaking diameters in the case of bromoform reinforce the idea that oscillations
may be a drop breaking mechanism while starting to interact with instabilities due to the drop
wake, as it has been already suggested [2, p. 188]. In fact, the only way to study the drop
breaking appearance numerically would be to remove the edge effects completely.

3.3.4. Frequency of oscillations. Among the secondary drop movements, the fluctuations have
been analysed differently, according to the authors, from the Weber number or the Reynolds
number [2, p. 185-187]. The very simplified model based on the drop’s natural oscillation
frequency enables a rough theoretical comparison to be made. The drop’s natural oscillation

frequency is given by [11]: fn=, /%, where ¢ is the interfacial tension, d. is the

equivalent spherical diameter, p is the water density and 7y is the density ratio. Figures 15
and 16 show the oscillations appearing during the 6 and 8 mm chlorobenzene drops’ fall.
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Figure 15. Velocity fall oscillations.
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Figure 16. Velocity fall oscillations.

Frequencies of around 6 and 10 Hz have been detected relatively close to the 8.06 and 12.42 Hz
theoretical values, for the 8 and 6 mm diameters, respectively.

As experiment [3] does not indicate any oscillation for the chlorobenzene drops falling
in water, it can be attributed to the edge effect. In fact this is particularly evident because,
for this 8 mm drop, the parameter L/D is equal to the relatively low value 1.25 (Figure
16). Moreover the amplitude of the oscillations are stronger here than for the 6 mm drop
(Figure 15) for which the edge effects are lower because L/D =3.33 in this case.

4. CONCLUSION

This study, putting the SURFER code into action in its three dimensional and axisymmetrical
versions, allowed us to numerically determine the terminal velocity and shapes of drops falling
into water. In the versions presented here, the code describes the drop’s fall correctly, but
cannot do it without the edge influence and consequently cannot be used for a precise quan-
titative validation through the terminal velocity. In fact these influences introduce oscillations
which destabilize the fall, thus fluctuating the terminal velocity and shape of the drop.

Taking into account these restrictions, the agreement with the experiment stays good con-
cerning the order of magnitude of the terminal velocity. Likewise the shape taken by the drops
corresponds well to the regime predicted by the experimental correlations, at least during the
installation phase of the fall in terminal velocity. Using the axisymmetrical code version, the
breaking of the bromoform drop is produced for the diameter of 5Smm, in accordance with the
experiment. The connection with theory is also relatively good as far as the initial acceleration
and the pulsation during the fall are concerned.
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The terminal velocity’s calculation does not permit a clear preference to be distinguished
between the axisymmetrical and three dimensional approaches for the treatment of the fall,
as well as in the case of weak and strong deformations, in small as well as large diameters.
The axisymmetrical code could however be preferable for the following reasons: it is more
practical, less difficult to manipulate, it needs less calculation time and it is more easily
adapted to a refinement of the spatial definition.
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